Stochastic Mesocortical Dynamics and Robustness of Working Memory during Delay-Period
نویسندگان
چکیده
The role of prefronto-mesoprefrontal system in the dopaminergic modulation of working memory during delayed response tasks is well-known. Recently, a dynamical model of the closed-loop mesocortical circuit has been proposed which employs a deterministic framework to elucidate the system's behavior in a qualitative manner. Under natural conditions, noise emanating from various sources affects the circuit's functioning to a great extent. Accordingly in the present study, we reformulate the model into a stochastic framework and investigate its steady state properties in the presence of constant background noise during delay-period. From the steady state distribution, global potential landscape and signal-to-noise ratio are obtained which help in defining robustness of the circuit dynamics. This provides insight into the robustness of working memory during delay-period against its disruption due to background noise. The findings reveal that the global profile of circuit's robustness is predominantly governed by the level of D1 receptor activity and high D1 receptor stimulation favors the working memory-associated sustained-firing state over the spontaneous-activity state of the system. Moreover, the circuit's robustness is further fine-tuned by the levels of excitatory and inhibitory activities in a way such that the robustness of sustained-firing state exhibits an inverted-U shaped profile with respect to D1 receptor stimulation. It is predicted that the most robust working memory is formed possibly at a subtle ratio of the excitatory and inhibitory activities achieved at a critical level of D1 receptor stimulation. The study also paves a way to understand various cognitive deficits observed in old-age, acute stress and schizophrenia and suggests possible mechanistic routes to the working memory impairments based on the circuit's robustness profile.
منابع مشابه
T-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY
A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...
متن کاملEffect of cerebral administration of enalapril on spatial memory in scopolamine-induced amnesia in rats
Numerous studies conducted in laboratory animals and humans indicate that angiotensin converting enzyme inhibitors reinforce memory and learning. In this paper we study the effect of injection of enalapril into the cerebral ventricles on spatial memory of white mice in the double- y maze, following the induction of an Alzheimer- like amnestic model with scopolamine. To estimate the duration o...
متن کاملCircuit properties of the cortico-mesocortical system
It has been shown that dopamine (DA) modulates memory 0elds of dorsolateral prefrontal cortex (PFC) neurons. The DAergic neurons which project to the PFC are localized in the midbrain. We here developed a computational model network which includes the PFC circuit and the mesencephalic DA unit to analyze the circuit property of the cortico-mesocortical system. In our computer simulation, the cor...
متن کاملDissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory
Several lines of evidence suggest that the striatum has an important role in spatial working memory. The neural dynamics in the striatum have been described in tasks with short delay periods (1-4 s), but remain largely uncharacterized for tasks with longer delay periods. We collected and analyzed single unit recordings from the dorsomedial striatum of rats performing a spatial working memory ta...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015